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Axisymmetric droplet spreading is investigated numerically at relatively large rates of
spreading, such that inertial effects become important. Results from two numerical
methods that use different means to alleviate the stress singularity at moving contact
lines (a diffuse interface, and a slip-length-based level-set method) are shown to
agree well. An initial inertial regime is observed to yield to a regime associated
with Tanner’s law at later times. The spreading rate oscillates during the changeover
between these regimes. This becomes more significant for a fixed (effective) slip length
when decreasing the value of an Ohnesorge number. The initial, inertia-dominated
regime is characterized by a rapidly extending region affected by the spreading, giving
the appearance of a capillary wave travelling from the contact line. The oscillatory
behaviour is associated with the rapid collapse that follows the point at which this
region extends to the entire droplet. Results are presented for the apparent contact
angle as a function of dimensionless spreading rate for various values of Ohnesorge
number, slip length and initial conditions. The results indicate that there is no such
universal relation when inertial effects are important.

1. Introduction
We consider here the spreading of a droplet on a wall, at rates of spreading such

that the instantaneous value of the Reynolds number Re = ρRU/µ is significant,
where R is the radius of the contact line, U is the contact-line speed, and ρ and
µ are the density and dynamic viscosity of the droplet. Effects of inertia in droplet
spreading have been widely studied, but usually in the context of droplet impact on a
dry wall, in which case the spreading is dominated by kinetic effects resulting directly
from the impact (for a recent review see Yarin 2006). We investigate here the inertial
effects resulting from the spreading motion itself. Numerical methods are used for
this purpose, supplementing earlier experimental and theoretical work, that we briefly
review here.

An inertial spreading regime has been identified experimentally by Biance, Clanet &
Queré (2004), where a sessile droplet was brought carefully in contact with a plate,
on which the droplet spread. The radius of the wetted area approximately followed
R ∼ t1/2 at early times, with a sudden transition to the well-documented Tanner
law R ∼ t1/10 (Tanner 1979) at later times. Biance et al. (2004) presented a scaling
argument, based on a force balance for the part of the droplet involved in the
spreading process, which resulted in convincing agreement with the data. The scaling
argument is valid for small times, such that R is much smaller than the droplet
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radius. A main step in this force balance is the notion that the fraction of the droplet
involved in the spreading process depends on time.

Measurements of the interface shape in the contact-line region have been performed
by Stoev, Ramé & Garoff (1999), for a range of Re and capillary numbers, Ca = µU/σ ,
where σ is the coefficient of surface tension. Although results were not obtained for
droplet spreading, but for a solid entering a pool, their results indicate that, on a
macroscopic scale, the apparent contact angle is decreased by inertial effects.

The observations by Stoev et al. (1999) substantiate an earlier analysis by Cox
(1998), to some extent, wherein it is assumed that 1/λ� Re � 1, where λ is (in the
present notation) the slip length made dimensionless with the initial drop radius.
(A second analysis by Cox (1998) for λRe � 1 is beyond the scope of this paper.)
The result obtained by Cox indicates that apparent contact angles decrease at larger
values of Re, as observed experimentally, but showed no quantitative agreement with
measurements.

The spreading of thin droplets with significant inertia was investigated in detail by
Hocking & Davis (2002), who used a lubrication approach (with a slip condition).
They showed that a simple relation between apparent contact angle and U does not
exist at sufficiently large values of Re. At a fixed value of λ, there exists a critical value
of Re beyond which the approach to the static droplet shape becomes oscillatory.
This critical value of Re decreases for increasing values of λ.

In this paper we use numerical simulations to study inertial effects in axisymmetric
droplet spreading. Most related previous numerical studies have focused on the impact
of a drop on a wall; an exception is the early study by Renardy, Renardy & Li (2001),
who presented results for a single test case of spreading (of a planar two-dimensional
droplet) for their VOF scheme.

Practical restrictions on the computations limit this study in two ways. First, the
inertial effects investigated are primarily on the scale of the entire droplet. Hence Re
reaches values up to O(102), which will be seen in § 3 to have substantial effects on the
spreading process, but Reynolds numbers based on the dimensions of the contact-line
region, λRe or λU/Oh using the present time scaling in § 3.2, are up to O(1). A study
of large inertial effects in the contact-line region (as investigated previously by Cox
1998, using analysis) is therefore not attempted here.

The second limitation of this study is that the numerical methods adopted here
cannot be used to resolve the flow accurately on a length scale smaller than
that corresponding to λ= O(10−2). This falls well short of realistic conditions for
millimetric droplets, which would demand λ=O(10−4) at most (Marsh, Garoff &
Dussan V. 1993; Eggers & Stone 2004). Nevertheless, our previous work shows that
results for the range of values of λ achieved here capture the main trends known
for much smaller values of λ. Numerical results for two-dimensional planar flows
obtained from an earlier version of a code used here (Spelt 2005) appear to converge
to a lubrication theory for thin droplets at values of λ similar to those used here. A
further comparison with lubrication theory is performed in § 2, and the effect of the
slip length is investigated in § 3.

Several formulations are available to alleviate the stress singularity at the moving
contact line (e.g. Huh & Scriven 1971; Dussan V. 1979). We use here two different
methods, implemented seperately: a slip-length-based level-set (LS) method (Spelt
2005), and a diffuse interface (DI) method (Jacqmin 1999, 2000). Alternative
methods include a precursor film (de Gennes 1985) and surface-tension relaxation
(Shikhmurzaev 1997). A comparison between the two methods establishes the
sensitivity of the results to the manner in which the stress singularity is alleviated,
and allows translation of results between these two methods.
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2. Numerical method
The DI method used here generally follows Jacqmin (1999, 2000), except that the

volume fraction of the droplet fluid C is chosen as the order parameter, which is
governed by the convective Cahn–Hilliard equation:

∂C

∂t
+ u · ∇C = ∇ · (M∇φ), (2.1)

where M is the mobility, φ =6
√

2σ (ζ −1Ψ ′(C) − ζ�C) is the chemical potential,
Ψ (C) = 1

4
C2(1 − C)2 is the bulk energy density, σ is the coefficient of surface tension

and ζ is a measure of the thickness of the diffuse interface. The diffuse interface is a
narrow miscible gap of O(ζ ) thickness, separating the two fluids. The diffusion term
in (2.1) originates from thermodynamics, and provides a mechnism to maintain the
regularity of the diffuse interface. A prescribed contact angle value θw results in the
following boundary condition for the volume fraction:

tan
(π

2
− θw

)
=

−n · ∇C

|∇C − (n · ∇C)n| , (2.2)

where n is the unit outward normal defined at the wall. The diffusive flux through the
boundary is set to zero, n · ∇φ =0, irrespective of the contact angle imposed. Finally,
the surface tension force is computed by fst = φ∇C (Jacqmin 1999).

The equations of motion were solved on a MAC grid. The code has been validated
for the axisymmetric breakup of a rising bubble at very large density contrast (1:1000),
as well as for the nonlinear evolution of a Rayleigh–Taylor instability. Typical loss
in the total mass of the droplet is of order of ‘machine accuracy’. In the DI method,
the no-slip condition is used; the motion of contact lines is due to the diffusive flow
rate that occurs in the diffuse interface region. The results of the DI method at a
given value of ζ can be approximated by lubrication theory if an appropriate value
of the slip length is used. The comparison indicates that the thickness of the diffuse
interface is related to an ‘effective’ slip length. At the end of this section we describe
how we determine the effective slip length by fitting our results to the prediction of
the lubrication theory.

The LS method used here is essentially that of Spelt (2005, 2006), where details of
convergence rates and mass conservation can be found. The only modification is the
change from two-dimensional Cartesian to cylindrical coordinates. The contact-line
speed is obtained as in the previous work, i.e. it is averaged over the time for the
contact line to move through several grid cells (Spelt 2005). The LS code uses the slip
condition at the wall, v = λn · ∇v, where v denotes the velocity component of fluid
parallel to the wall.

The two numerical methods are used here to study axisymmetric droplet spreading.
We isolate the inertial effects caused by the spreading process, as opposed to e.g.
those arising directly from the impact of a droplet on a wall, by choosing the intial
drop shape as corresponding to a circular-cap droplet, which would have a contact
angle θ0 (typically θ0 = π/3 or 2π/3) were it not that a different microscale contact
angle θw is prescribed (typically θw = π/18). The droplet therefore spreads to a static
shape corresponding to the microscale contact angle, θw . The instantaneous capillary
and Reynolds numbers both depend on the contact-line speed. In order to distinguish
between different simulations, we shall present results for constant values of the
Ohnesorge number

Oh =
√

Ca/Re =
µ√

ρσR0

, (2.3)
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Figure 1. (a) Convergence study and comparison with theory for the apparent contact angle
as a function of Ca at Oh = 0.141. Solid lines are DI, dash-dotted lines are LS results; the
grid spacing for DI is (from top to bottom) �r =1/150, 1/200, 1/250 (the last two virtually
overlap); for LS, �r = 1/128/, 1/256 (from bottom to top). The thick solid line is (2.4) for
λ=0.01. (b) Comparison between (2.4) (dash-dotted lines) and the DI method results (solid
lines) with ζ = 0.00375, 0.005, 0.00625 and �r = 1/200 (from top to bottom).

which only depends on fluid parameters and the charateristic length scale used in this
paper, the initial radius of the droplet R0.

Results for different values of the grid spacing �r (= �z in both methods, where
the z-axis is the axis of symmetry) are presented in figure 1(a), as the apparent
contact angle θm, defined as the maximum angle between the interface and the
horizontal within a distance of 0.2R0 from the contact line, versus the dimensionless
instantaneous velocity of the contact line (i.e. Ca), with time as the parameter along
the curve. The results from the DI method are for a constant thickness of diffuse
interface (corresponding to dimensionless ζ = 0.005). These agree quite well with the
results obtained from the LS method for a dimensionless slip length of λ=0.01,
for Ca up to about 0.03, as well as with the lubrication theory for this slip length
at very low Ca, despite the relatively large value of the slip length. The sensitivity
of the LS results to the grid spacing are similar as those reported in Spelt (2005).
The comparison worsens at larger values of Ca, however. Although it is dificult to
speculate about the origin of this, note that the initial radius of curvature of the
interface near the contact line is very small, possibly smaller than the thickness of
the diffuse interface (usually the thickness between C = 0.05 and C = 0.95 is around
4ζ ), and this may lead to some differences with results from the LS method at large
values of Ca.

Villanueva & Amberg’s (2006) concluded that the apparant contact angle is
‘fairly independent of interface width’ in their DI simulations. We investigate this
in more detail in figure 1(b), where results from the DI method are compared with
lubrication theory (based on a slip condition) for different values of the thickness of
the diffuse interface. The apparent contact angle predicted by the lubrication theory
yields (Hocking 1983)

θ3
m = θ3

w + 9Cacl ln(Rθw/(6eλ)), (2.4)

where Cacl ≡ µ1U/σ and R(t) is the instantaneous dimensionless drop radius.
Jacqmin (2000) showed that, when assuming that ζ/

√
µM → 0, the effective slip

length caused by the diffuse interface is proportional to
√

µM . However, in our
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Figure 2. Snapshots of droplet interface shapes during spreading for initial values of θm equal
to (a) π/3 and (b) 2π/3. The droplet volume is the same in both cases; Oh = 0.0354. Solid lines
represent results from the DI method, dash-dotted lines are from the LS method ((a) only). In
(a), t = 0, 0.113, 0.226, 0.452, 0.679; in (b), the time interval is 0.057.

studies ζ/
√

µM is O(1), and we find that the effective dimensionless slip length λdi is
not sensitive to the viscosity, but that we can write, to a reasonable approximation,
λdi = αζ , where α is approximately constant. The coefficient α can be determined by
approximating the numerical results by (2.4) with an appropriate slip length in the
small-Ca regime. In figure 1(b), the numerical result with ζ = 0.005 is first fitted to
that predicted by the lubrication theory, giving a dimensionless effective slip length
λdi = 0.009, then the constant obtained α(= 1.8) is used in the lubrication theory
approximations of larger interfacial characteristic lengths. A deviation is seen only
for the largest value of ζ , but one would expect the comparison to get worse in such
cases, especially because of the limitations in the validity of the lubrication theory. In
any case, in figure 1(b) the slope of the numerical and analytical results become quite
close at the smallest value of ζ simulated here. We conclude that α = 1.8 ± 0.2. We
compare results from the two computational methods in the sections below by setting
α = 2 (as is also used in figure 1a). As will be seen in figure 6, the methods agree quite
well for a range of values of Oh. Close inspection of Villanueva & Amberg’s (2006),
results indicates that the contact-line speed decreases with the thickness of the diffuse
interface, as observed here.

3. Results
3.1. Interface shapes

Some main features of the spreading process at moderate values of Re can be observed
in figure 2, where sequences of drop shapes are shown for θ0 = π/3 and 2π/3 (the
experimental case of θ0 = π being beyond the reach of the present simulations), and
Oh = 0.0354. The interface resulting from the DI method corresponds to the C = 0.5
contour. Several observations can be made from these results. First, the results of
the two numerical methods agree reasonably well. The LS method predicts spreading
rates that are lower than those obtained from the DI method, but there appear to be
no other differences. Secondly, the dynamical behaviour at short times is markedly
different from that at later times in the spreading process. The late-time behaviour
is the well-documented process of the uniform decrease in droplet height (near the
droplet centre) during spreading. At early times though, the drop height only decreases
in a small region close to the contact line, whereas the drop height at the axis of
symmetry remains almost stationary. This spreading-affected region increases with
time, giving the appearance of a capillary wave with the wavefront propagating
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Figure 3. Instantaneous streamlines obtained from the DI method for the case shown in
figure 2(b) at times t = 0.057 to 0.868 during the initial (a) t = 0.057 and oscillatory regime (b)
t = 0.509 and (c) t = 0.848. The spacing between the values of streamline contours is 0.01. The
thick line corresponds to the contour C = 0.5, indicative of the interface location.

from the contact line to the top of the droplet. This finding is very similar to the
experimental observations of Biance et al. (2004).

Figures 2 and 3 provide further details. In figure 3, instantaneous streamlines show
how at short times, strong flow occurs approximately along the outwards-directed
normal vector at the drop surface, in a region close to the contact line. When the
resulting ‘wavefront’ reaches the top of the droplet, and when the droplet centre
has collapsed to a temporary minimum, some oscillations in the drop height occur.
Because of the set-up used in Biance et al. (2004), this stage has not been observed
experimentally. In figure 3(b) the collapse of the drop centre is further seen to
affect the flow inside the droplet. It pumps the flow outward from the centre and
consequently speeds up the spreading of the droplet. Figure 3(c) shows that at this
stage of spreading the drop height decreases only over a small region. This was not
observed in figure 3(a) and we will return to this in § 3.3.

3.2. Time scaling

The features of dynamical behaviour at the initial stage of droplet spreading are

observed on an inertial/capillary time scale T =
√

ρR3
0/σ . This time scale represents

the natural response time if the droplet is taken as a spring with the coefficient of
surface tension as the stiffness (as pointed out previously by Biance et al. 2004).
Figure 4 shows the dimensionless spreading rate (essentially the Reynolds number
based on the dimensionless slip length) as a function of time made dimensionless with
T for various values of Oh. It is seen that the oscillation in spreading rate, which
indicates the return of the capillary wave to the contact line, occurs synchronically in
the three cases, thereby supporting the time scaling used here.

3.3. Rate of spreading

The spreading rate is shown as a function of time in figure 5 for various values of
Oh (Oh was varied by changing the value of the viscosity). Two familiar regimes
can be identified. At Oh = 0.283 (the largest value simulated here), the spreading
velocity approaches a t−0.9 regime at long times, consistent with Tanner’s law (Tanner
1979). At Oh = 0.0141 and 0.00707, the smallest considered here, the spreading rate
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Figure 4. Effect of Oh on the dependence of the instantaneous dimensionless spreading rate
on the dimensionless time (as explained in the text). DI method for λ= 0.01 and different
values of Oh obtained by varying the surface tension coefficient.
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Figure 5. Instantaneous dimensionless spreading rate versus time, for various values of Oh,
where the initial value of θm = π/3, λ= 0.01 and Oh = 0.283, 0.141, 0.0354, 0.0141, and 0.00707
(from bottom to top). (a) Spreading rate, where the solid and dash-dotted lines indicate results
from the DI and LS methods, respectively; (b) detail of the DI results for U in (a).

.

is much larger, and the droplet is approaching its static shape rapidly, resulting in an
exponential regime in the spreading rate within the time span shown. Assuming that
θ − θw � θw , (2.4) can be integrated to give (see also Hocking 1983)

U ∼ exp
[
−θ3

wt/(R∞ Oh ln [R∞θw/(6eλ)])
]
, (3.1)

where R∞ is the dimensionless equilibrium radius of the contact line. For the present
simulations with Oh = 0.0141, the exponent is −0.38; the simulations give a value of
−0.44. At early times, the spreading rate exhibits a regime that is approximately a
power-law. The results obtained from the DI method can be fitted reasonably well by
U ∼ t−0.45 (apparently tailing off to t−0.4 at intermediate times). The results from the
LS method show a somewhat different exponent, U ∼ t−0.35. These findings compare
surprisingly well with the experimental results of Biance et al. (2004) that correspond
to a spreading velocity U ∼ t−0.48±0.05 (their theoretical analysis showed U ∼ t−0.5). As
shown in figure 5(b), the proportionality factor in these relations is weakly dependent
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Figure 6. Apparent contact angle as a function of capillary number for (a) Oh =0.141,
(b) 0.0354, (c) 0.0141, and (d) 0.00707. The solid and dash-dotted lines indicate results from
the DI and LS methods, respectively.

on Oh but appears to converge with decreasing Oh. Biance et al. explained this regime
to result from the curvature-driven surface-tension force being only experienced by a
fraction of the droplet, which increases in time. The argument does not account for
viscous effects. The comparison is therefore tentative; the Reynolds number in the
experiments was O(103), well above the values in the present simulations.

The transition between the early and late regime at sufficiently small values of
Oh is seen to be accompanied by oscillations in the spreading rate. By comparison
with figure 2(a), it is seen that this oscillatory spreading occurs exclusively during the
collapse of the centre of the droplet, following the arrival of the wave at the top of the
drop. Careful observation of the interface shape in figure 2(a) shows that the top of
the drop bulges out in the region where the interface tangent is the largest, delaying
the decrease in θm with increasing time. This effect is of course much more pronounced
in figures 2(b) and 3. In particular, the stage shown in figure 3(b) corresponds to a
local minimum in θm. It is tempting to relate these findings to the analytical work by
Hocking & Davis (2002), but the oscillations in the spreading rate discovered there
relate to the final, exponential appproach to the static shape. The Reynolds numbers
during the exponential stage in the present simulations are significantly below the
critical values of Hocking & Davis (2002), and no oscillations in that regime are
observed here.

3.4. Apparent contact angle

The maximum tangent of the interface is plotted in figure 6 as a function of the
instantaneous value of Ca, for various values of Oh. The thickness of the diffuse
interface in the DI method, and the dimensionless slip length in the LS method
were kept constant at ζ = 0.005 and λ= 0.01, respectively. At small Oh, a sudden
transition is observed, corresponding to the change in spreading regime discussed
in § 3.3. Clearly, θm is not a single-valued function of Ca. In fact, it is clear from
figure 7(a) that the relation between apparent contact angle and contact-line speed is
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Figure 7. (a) Apparent contact angle as a function of capillary number for initial apparant
angles of π/3, π/2 and 2π/3 (from left to right). DI method for Oh = 0.0354, ζ = 0.005.
(b) Effect of dimensionless slip length on spreading rate as a function of time. The dash-dotted
and solid lines are for λ= 0.01 and 0.02, respectively. The upper two lines are for Oh =0.0141,
the two lower lines for Oh = 0.0354. Results are for the LS method.

sensitive to the initial conditions of the flow. Only at rather small values of Ca do
the results approach each other.

The results at Ca < 0.01 in figure 6 show that a decrease in Oh leads to a slightly
lower value of θm, which supports the findings of Cox (1998) and Stoev et al. (1999).
The sensitivity to inertial effects is however completely dominated by the converse
increase in θm at larger Ca, i.e. during the initial spreading regime. In the regime of
very large Ca, corresponding to the very beginning of the simulation, the difference in
the apparent contact angle between the two computational methods can be attributed
to their different ways of resolving the initial curvature singularity at the contact line.

3.5. Effect of slip length

A main effect of reducing the (effective) slip length, thereby approaching experimental
conditions, is a reduction in contact-line speed. Trends such as the oscillatory regime
should therefore be observed at lower values of λ by choosing a smaller value of Oh.
This is confirmed in figure 7(b), where we plot U as a function of time at two values
of λ, each at two values of Oh. The oscillations in the spreading rate reduce when
reducing λ, but this can be overwhelmed by the sensitivity to Oh.

4. Conclusions
Results from LS and DI methods, which agree well, show that inertial effects cause

droplet spreading to be non-monotonic, and that this is strongly dependent on initial
conditions, Oh and the slip length. The simulations support the experimental findings
of Biance et al. (2004), but provide further detail, especially regarding the transition
from an inertia-dominated to a viscous regime, which is seen to be non-monotonic.
The non-monotonic spreading is associated with the increasing region in the droplet
affected by spreading, giving the appearance of a capillary wave that travels from the
contact line to the top of the droplet, leading to a rapid collapse of the droplet centre.
The apparent contact angle is only independent of initial conditions at low values of
Ca. Attempts to collapse data for different values of the slip length (as in Spelt 2005,
2006) were not successful, thereby preventing the extrapolation of the results to more
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realistic values of the slip length. It is shown in § 3.5, however, that the oscillatory
regime at a smaller value of the slip length could still be observed by setting the value
of Oh sufficiently low. The good agreement between the results of the DI method
and the LS method with a slip condition show that the results presented here are not
sensitive to the manner in which the contact-line singularity is alleviated.

The authors would like to thank Lawrence Lau for assistence with implementation
of the axisymmetric LS method, and EPSRC for financial support (grant
EP/D031222).
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